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Abstract. A generalisation of the Hopfield model which includes interactions between 
p ( > 2 )  lsing spins is considered. The exact storage capacity behaves as N P - ' / 2 (  p - I ) !  In N 
when the number of nodes, N, is large. In the limit p + m ,  the thermodynamics of the 
model can be solved exactly without using the replica method; at zero temperature, a 
solution which is completely correlated with the input pattern exists for a <a, where 
ac+ CO as p -P CO and this solution has lower energy than the spin-glass solution if a < a I  = 
1141112 where the number of patterns n = ( 2 a / p ! ) N P - ' .  For finite values of p ,  the 
correlation with the input pattern is not complete; for p = 3 and 4, approximate values of 
a, and a, are obtained and for ~ + C O  the replica symmetric approximation gives 
a, - p / 4  In p. 

1. Introduction 

Spin glasses provide models for storage and associative memory properties of neural 
networks. In particular, the Hopfield model (Hopfield 1982) describes the storage of 
n random patterns as N bit numbers. Although the number of patterns which can be 
stored perfectly behaves as N / 2  In N (Weisbuch and Fogelman Soulie 1985, Bruce er 
a1 1987) for large N, the model is expected to be useful as a pattern recognition model 
for finite values of the storage ratio a = n/ N; at low temperature (Amit et al 1985b, 
1986), there exists a metastable state which is highly correlated with a particular input 
pattern provided a < a, and, therefore, a close representation of the input vector will 
be recovered (for a < a,) provided one starts the iteration within the basin of attraction 
of the correlated state. For a < a,, the correlated state becomes the ground state. The 
phase diagram, however, was calculated in the replica symmetric approximation and 
it is not known whether any new effects arise when replica symmetry breaking is 
included (although the effect on the values of aI and a, is expected to be small (Crisanti 
et a1 1986)). 

A natural generalisation of the Hopfield model is to replace the two-spin interaction 
by a polynomial interaction of degree p > 2 in the Ising spins (Peretto and Niez 1986). 
Introduction of many-spin interactions should also be Useful in other pattern recogni- 
tion problems in order to describe correlations of higher order than two. Although 
other methods of dealing with higher-order correlations exist, for example using 
two-spin interactions and hidden neurons (Ackley et a1 1985, Rumelhart et af 1985), 
the learning algorithms for the interactions usually involve long timescales and therefore 
more direct methods are of interest. 

In this paper, the following generalisation of the Hopfield model, where the 
Hamiltonian is a monomial of degree p in the Ising spins, will be considered: 

x= - Ji,,,,.,ipSi,Si~ * * . Sip (1) 
i I < ... < ip 
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where the S i ,  i = 1,. . . , N,  are the Ising spins and where the interactions are given by 
a generalised Hebb rule, 

where the (8' = *l), = 1,. . . , n, are the random patterns one wants to store. The 
spins are updated according to the rule that Si becomes +1 if the local magnetic field 

is greater than zero, and becomes - 1  otherwise. The dynamics therefore takes one, 
depending on the initial conditions, to a local minimum of the energy defined in 
equation (1) by X. 

The paper is organised as follows: in 0 2, perfect storage properties of the network 
will be discussed. The number of patterns which can be stored without error increases 
with p and N as N P - ' / 2 ( p  - l ) !  In N for large N. As in the two-spin case, the 
thermodynamics of the model predicts two critical values of the storage ratio a = 
p !  n / 2 N P - ' ;  a,( p ,  T )  corresponding to the existence of a metastable state close to the 
input pattern and a , ( p ,  T )  corresponding to this state having a lower energy than the 
spin-glass state (where T is the temperature). The storage capacity allowing for a 
small fraction of errors is therefore larger than the perfect storage capacity and increases 
with N as 2 a c ( p ,  O ) N P - ' / p !  for large N. The transition at a,  is first order as in the 
two-spin case but the mechanism is different. The large-p limit of the model is exactly 
soluble and its phase diagram will be determined in § 3 (the limit p + CO is taken after 
the limit N + CO). In particular, a,( p ,  0) +CO as p + CO while a'( p ,  0) + 1/4 In 2 in this 
limit. In § 4, the replica formalism for the thermodynamics of the model will be 
introduced; replica symmetry breaking effects can be calculated exactly in the large-p 
limit and, for finite values of p ,  approximate values for a ,  and a 1  will be obtained. 

2. Perfect storage 

If a particular input vector { ( f }  is to be stored without error then one requires that it 
is a stable state of the dynamics described by equation (3) .  This means that the local 
magnetic field Hi for { S i }  = {(;} must have the same sign as the spin 6; at each site i. 
Therefore the quantities 

must be positive at each site i. The right-hand side of equation (4) can be divided into 
two parts: a signal term coming from the contribution of pattern 1 to J1,,>,  which is 
equal to p and therefore favours its recall and an interference term coming from the 
contribution to X.I,. . t P  of all other patterns which has mean zero and Gaussian 
fluctuations of variance where the number of patterns 

n = 2 a N P - ' / p !  . ( 5 )  
The signal and interference terms are therefore of the same order if the storage ratio 
(Y is finite. 

Since the quantity 

0 = n O(R,) (6) 
I 
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is equal to one if the vector is perfectly stored and vanishes otherwise, the expectation 
of Q averaged over all other input patterns, T = (Q), gives the perfect storage probabil- 
ity. Clearly, there are correlations between the Ri at different sites i because the 
interaction matrix Jil,.,,,ip is symmetric. If firstly, however, these correlations are ignored, 
then 

T = ( e (  R i ) ) N  = exp [ N In (I' "".-.2/2)] 

- ( p / 2 a ) l / 2  6 ( 7 )  

and expansion of this equation for small a / p  implies that the exact storage probability 
is finite provided 

NP-1 
nd 

2(ln N ) ( p - I ) ! '  

It will turn out that equation (8)  also holds for the exact calculation of T (for large 
N )  which includes the correlations. 

The increase in storage capacity as a function of N as p is increased is, however, 
compensated by an increase in the computer memory required to store the interaction 
matrix J1l,...,t,. A measure of how well the network stores information as a function of 
p is the ratio of the number of bits needed to store the patterns to the amount of 
computer memory required to store the matrix and can be defined depending on 
whether or not the symmetry of the Jil,...,i, is used in the storage, 

number of patterns x number of nodes 
number of independent Ji,,...,i, 2a = 

2a 
P! total number of Jil , . . . , i ,  

number of patterns x number of nodes a=-=  

respectively. In terms of a, the perfect storage capacity increases linearly with p ,  

a <p/4  In N ( loa )  

while the perfect storage capacity in terms of a decreases with p ,  

1 
2 (p - l ) ! ln  N '  

a <  

The exact calculation (for large N )  of T = (0) which includes the correlations 
between different R, can be done in a similar way to the two-spin calculation (Bruce 
et a1 1987, Gardner 1986) by writing an integral representation of the 6 function in 
equation (6 ) ,  

The averages for the other patterns { [ f }  can be done more easily than for p = 2 
since the integrand is a product over these patterns and it is necessary to keep only 
up to second-order terms in the expansion of the exponential for each pattern p ;  
higher-order terms are of higher order in N ' 2 - p ) / 2 .  These higher-order terms correspond 
to correlations between different J~l,...,ip other than those implied by the symmetry of 
the matrix and these are relevant for large N only if p = 2. The integrals over the 
variables { p i }  and { T ; }  can then be done by introducing an integration variable t which 
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decouples the integrations of pi and T~ over the sites. T can then be expressed as a 
saddle point of the integral over t, 

Solution of this saddle-point equation gives an expression which is in general different 
from the approximate expression (7 ) .  However, for small a l p  one recovers equation 
(7)  and so the storage capacity given by equations (8) and (10) is exact (for large N ) .  

3. Thermodynamics of the large-p limit 

In the next two sections, the thermodynamics of the model for finite values of the 
storage ratio a will be discussed. Physically, the zero-temperature limit gives informa- 
tion about the existence of correlated states which closely represent a particular input 
pattern while a finite temperature simulates the effect of noise on these results. 

Firstly, some properties of the energies of spin configuration will be considered. 
In the large-p limit this will be used to calculate the density of states as a function of 
energy. The partition function of the model can then be obtained exactly in a similar 
way to the solution of the random energy (Derrida 1980, 1981) and a generalisation 
of it (Mottishaw 1986). The limit p + c c  is taken after the limit N + * .  

Provided the patterns have only correlations with one another of order 1 / d N ,  then 
any spin configuration C = {Si} has a macroscopic overlap (i.e. an overlap which is 
finite as N + m ) ,  

with a finite subset r of patterns p and a microscopic overlap (of order l / d N )  with 
all patterns in the complement of this set, f ,  where the number of patterns in r is of 
order N P - ’  for large N. 

From equation ( l ) ,  the energy per site of configuration C is 

where l p  = m: for p E r for a given realisation of the patterns. 
Consider the set of patterns p E r to be fixed and consider the subset of configur- 

ations with fixed r and fixed values of 1, for p E r .  Then the energies E of these 
configurations vary as a function of the other patterns and the probability distribution 
of E ,  

(where ( ) means an average over patterns p E 1;) is 

for large N. 
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Expression ( 1 4 )  is obtained by writing P in terms of its Fourier transform which 
allows the average of the product of exponentials over independent patterns to be 
factorised, 

The average can be written for large N in terms of a function f (k(p!  N 2 - p ) l ’ 2 ) ,  

where 

f(x) = 1 -+x2+0(x3) 

can be obtained by expanding the exponential and averaging each term. Then 

- k 2 a  + O ( ( k N “ - p ” 2 ) 3 ) N P - 2 a  

The saddle point over k at k, = ( i / a ) ( e  +ZPEr 1,) then yields ( 1 4 )  for large N provided 
p > 2 with corrections of order N(2-p ’ i2  in N. 

One can also calculate the joint probability distribution for two configurations, CI 
and C,, with macroscopic overlaps { I ; } ,  p E rl ,  { l:}, p E T 2 ,  as a function of all patterns 
p in the set = f ,  n r2. The distribution is (for large N and e l  and e2 - 1 )  

P I * ( E * ,  U;}, E 2 ,  U:}) 

where q = 1 /  N Zj  Sj”Si2’ is the overlap between configurations 1 and 2. 
In the limit p + a ,  the energy levels of the model become independent random 

variables with mesn -EPEr I ,  since equation ( 1 5 )  implies that P 1 2 ( ~ 1 ,  e 2 )  tends to 
P ( . s 1 ) P ( e 2 )  for any pair of configurations C, and C2 which are not fully correlated 
with one another and, more generally, one can show that for any set of distinct 
configurations C,, . . . , C, and any integer m, the joint probability distribution of their 
energies factorises: 

As p + a, it is necessary to consider only states which are either fully correlated 
with a specific input pattern po (m,= 1,  m, = 0 for p # po) or states which are 
uncorrelated with any pattern (m, = 0 for all p )  since 1, = m: = 1 if m, = 1 and 1, = 0 
otherwise and since the distributions P(eI ,  . . . , E , )  depend only on { l ; } ,  i = 1, . . . , m. 
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States which are specific mixtures of input patterns which appear in the two-spin 
calculations (Amit et a1 1985a) are therefore degenerate with the uncorrelated states 
for p + CO. 

The partition function 

where p is the inverse temperature, can thus be written for large N as 
L13 

Z = n e-Np +I d e  a ( & )  e--PEN 
--oc 

where the first term comes from the input patterns which all have energy -1  and the 
second term comes from the uncorrelated states, and a ( & )  de  is the number of 
configurations with energies between E and E +de. 

In order to determine the phase diagram, it is necessary to know the density of 
states a(&) for a typical sample for large N. The expectation of a(&) de over all 
patterns is given for large N by (from equation (14)) 

1 / 2  

( a ( & )  de)  = (x) 4lra 2N exp(-Ne2/4a) de. 

If de  is taken to be of order 1/  N", where 0 < w < 1 ,  then expression (19) is exponentially 
large provided 

Iel < (4a  In 2)'/*.  

Therefore, since the energy levels are independent random variables, the typical 
value of thc number of states is equal to its expectation, a(&) dF = / Q ( e )  de),  with 
Gaussian fluctuations - J a ( e )  de. However, if I F ' : ,  (4a In 2)'  ' thsri (Cl(&)) de is 
exponentially small in N. Since a(&) de  is an integer, this means that, for almost all 
samples, a( e )  dE = 0 and that a( E )  dF = 1 with a yobability which is exponeiitially 
small in N. Thus a(&) d &  = O  for a t\vical sample it 1e1> (4a  In 2)1'2 and so 

(20)  eo = - (4a In 2)''2 

is the ground-state energy for the uncorrelated states. Thus 

for large N. 
The system has three phases depending on which contribution to Z domindtes 

equation (21). If T >  T g =  (a/l t12)~/ ' ,  then for large N the integral in equatioil ( 2 i j  
is dominated by its saddle point; this is a paramagnetic phase with free energy per site, 

(22) f = -( T In 2 + a /  T ) .  
At T = Tgr there is a spin-glass transition for the uncorrelated states where the system 
simply falls into a set of states which have a finite energy difference from the ground 
state, and so 

f= -(4a In 2)'I'. (23) 
In this phase, the integral is dominated by its lower endpoint. The ferromagnetic phase 
where the input patterns dominate has free energy 

f =-1 (24) 
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and the phase boundary between this phase and the paramagnetic phase is given by 

1 1 

while the boundary between the spin-glass and ferromagnetic phases determines 

a = 1/4 In 2. (26) 

which is independent of temperature. The phase diagram is shown in figure 1. 
Since the ferromagnetic phase exists throughout the phase diagram, 

a,+m as p + m  (27)  

for all temperatures and throughout this phase it is completely correlated with the 
input pattern. It will turn out that the ferromagnetic state is metastable in a region 
above the spin-glass transition temperature line T8 for all p > 2  and, since a,(T)  
increases with p ,  this means that the stability of the input pattern with respect to noise 
increases with p and that the energy barriers tend to infinity as p tends to infinity. 
Another difference from p = 2 is the existence of a ferromagnetic/paramagnetic transi- 
tion line. 

In order to understand the replica symmetry breaking for the p + c ~  limit and to 
formulate the model for finite values of p ,  the replica method will be used. 

a 

Figure 1. The phase diagram for p --* CC. 

4. Replica formalism of the thermodynamics 

The free energy is obtained from the expression 

(2') - 1 
F = -1im ___ 

I-0 1 

where 
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and 2 f y  is the Hamiltonian of equation (1) defined for the spin configuration {Sr} and 
f is the set of patterns (with O ( N P - l )  elements) which do not belong to Ty for any 
replica y. For large N, one can neglect microscopic overlap terms in 2 f y  (i.e. p jZ T,) 
which come from patterns which belong to Ta for some S # y. 

Then, 

Each term in the sum over possible choices of Ty then corresponds to a different way 
in which the system singles out as N +. CO a specific Ty for each replica y. Since the 
last term in equation (30) is a product over patterns p ET, the exponential may be 
expanded for each pattern and the average over the patterns performed. For a given 
pattern p, 

since the linear term averages to zero and the number of terms contributing to the 
second average is N P / p !  for large N. The number of terms contributing to the kth 
average is of order ( N p ’ 2 ) k  in N and so that the kth term in the expansion is of order 
~ k ( l - P / 2 )  . Since there are order N P - ’  patterns, the higher-order terms in the expansion 
may be neglected provided p > 2  (if p = 2  the series may be resummed to give the 
expression of Amit et a1 (1985b)). These higher-order terms correspond to correlations 
in the J,l,. . , , p  other than those implied by the symmetry of the matrix. 

Then the free energy is obtained from the saddle point of the integrals over m:, 
k:, qy6, rys: 
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when the extremum means a minimisation of F with respect to m: and r y s  and a 
maximisation with respect to k i  and 4’’. 

It will be assumed that there is a macroscopic overlap with only one pattern (pattern 
1). Higher-energy mixture states can be obtained by assuming that there are macro- 
scopic overlaps with more than one pattern. Secondly, the replica symmetric ansatz 
will be made, 

q y s  = 4 y y 6  = r k r = k  m r = m  (33) 

which leads to the following mean-field equations: 
05 

m = [ Dz tanh p ( k + &  z )  

q = [-m Dz tanh2p(k+& z )  

--cc 

m 

k = pmp-’ 

r = 2pqp-’ 

where 

At all temperatures, these equations have a paramagnetic solution, 

r = q = m = k = O  (35)  

P F /  N = -In 2 -@‘a (36) 

with free energy 

and this solution will be the correct one at high temperatures. 

one has 
There are also other solutions to equations (34). In particular, at zero temperature 

m = 2 erf[(p/2a)”2mP-’] (37) 

and q = 1 ,  r = 2p, k = p m P - ’  provided k # 0. Equations (37) have a solution with 
non-zero m and k provided a < a, where the largest value of m is stable with respect 
to variations in the non-spin-glass order parameters m and k for any value of a, 
whereas the other solution is always unstable. There is a first-order transition at a,  
where the two fixed points merge and annihilate. The order parameter m jumps from 
a finite value to zero at a,. The two-spin model also has a first-order transition in a 
at zero temperature (Amit er a1 1985b). However, the mechanism is different in this 
case. For p > 2, the transition is generated by second-order correlations between 
different J#,,.,.,ip; higher-order correlations vanish as N + cx for the reasons explained 
after equation (31). However, for p = 2, these higher-order terms remain finite for 
large N and must be included. Equation (37) is therefore incorrect for p = 2 because 
it includes only terms coming from correlations due to the symmetry of the matrix .lo. 
Although the equation has a non-trivial solution for a < a,, = 2/ T - 0.63 for p = 2, the 
transition is second order; as a + 2 / ~ ,  the value of m tends to zero. This means that 
the higher-order correlations between different Ji, are needed to generate the first-order 
transition at a = a,-0.14 and to remove the second-order transition at a. for p =2. 
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As p + 00, the solution is m = 1, in agreement with the exact solution, and is metastable 
throughout the T, a plane of the phase diagram. The replica symmetric ansatz also 
predicts the way in which a,+m as p + w ,  

f fc -pI4 lnp  (38) 

at zero temperature (from equation (34)). For p = 3 and 4, table 1 gives the replica 
symmetric predictions for a,  and the values of m at this value of a. The fraction of 
errors +( 1 - m,) at a ,  is quite small for both p = 3 and 4 (although it is larger than for 
p = 2 ) .  This means that the quality of recall is good below a,. Replica symmetry 
breaking effects will increase a, at low temperatures and since m, is smaller these 
effects will probably be larger than for p = 2. 

The equations for states which have macroscopic overlaps with more than one 
pattern can also be written. At zero temperature, these states are the same as those 
found by Amit et a1 for the two-spin model. However, since the signal term depends 
on m: their critical temperature and storage ratios decrease with p and their 
effect vanishes completely in the large-p limit. 

In order to obtain values for a l ,  it is necessary to consider spin-glass solutions of 
equation (32). If k i  is set equal to zero in equation (30), then the free energy is the 
same as that for the p-spin glass with Gaussian interactions (Gross and Mezard 1984, 
Gardner 1985) where the temperature is simply rescaled by a factor Ja and so spin-glass 
and paramagnetic solutions of (32) are the same as those found for this model. Solutions 
of the Sherrington-Kirkpatrick model (1975, 1978) and spin-glass solutions of the 
Hopfield model ( p  = 2 )  are not related in this simple way because of the higher-order 
terms in equation (31). Spin-glass transitions in p-spin models for p > 2 are qualitatively 
different from the p = 2 model. Firstly, the paramagnetic solution (35) and (36) is 
stable at all temperatures with respect to fluctuations in both spin-glass and ferromag- 
netic order parameters. However, it is not the correct solution at low temperatures; 
the entropy derived from equation (36) becomes negative below a temperature 

TE = ( a / ln  2)”* 

and so there must be a phase transition at a temperature Tg> TE to a new low- 
temperature phase. Secondly, low-temperature replica symmetric solutions do not exist 
at sufficiently high temperatures. However, if one assumes one replica symmetry 
breaking, a solution does exist for all values of p .  

For p + CO, this solution is exact at all temperatures below TE (Gross and Mezard 
1984); the Parisi order parameter function q ( x )  is a step function with lower value 0 
and upper value 1 and the break point xo behaves as T/TE in the low-temperature 
phase and the phase transition is at T =  TE in agreement with the exact solution. 
Physically, the low-temperature phase consists of a set of valleys whose energies have 

Table 1. Values of a,,  a , ,  m, and a I  as a function of p .  

2 0.14 0.14 0.97 0.05 
3 0.38 0.13 0.855 0.38 
4 0.395 0.10 0.94 0.38 
p + cc p / 4  In p [2 In p ( p  - I)!]-’ 1 0.36 
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a finite difference from the ground-state energy. Since the valleys have zero size in 
the limit p + a the upper value of q ( x )  is 1 and, since the energy levels of the model 
are independent random variables, the overlap between the valleys is always zero. 

For p finite (Gardner 1985) a one-replica-breaking solution (with m = k = 0) exists, 
the phase transition temperature Tg is larger than TE and the order parameter function 
is a step function with lower value 0 and upper value q , ( T , p ) <  1 since the valleys 
now have finite size. The transition is similar to the p + a  transition and the new 
solution is stable throughout a whole phase but (for finite p )  becomes unstable at a 
lower transition temperature T2(p) .  This solution may therefore be used to obtain an 
approximate value for the energy transition a 1  at T = 0 by comparison of its energy 
with that of the replica symmetric ferromagnetic solution, and the values for p = 3 and 
4 are given in table 1. For p = 3, a ,  = a ,  since the ferromagnetic solution is always of 
lower energy while, for p = 4, a l  is slightly smaller than a,  in this approximation. 

The phase diagram is qualitatively similar to the p + a limit (although a,( T )  is 
now finite and the ferromagnetic solution is not completely correlated with the input 
pattern); the ferromagnetic solution remains metastable above the spin-glass transition 
temperature Tg and a,( T )  increases with p which means that the stability of the patterns 
also increases with p ;  the ferromagnetic/spin-glass transition does not approach a = 0 
as in the case p = 2. 

5. Conclusions 

In summary, higher-spin correlations increase the number of patterns which can be 
stored. However, this is compensated by an increase in computer memory by the same 
power of N. This means that it is useful to define the ratios a and a (equations 
9 ( a ) ,  (b ) )  of the number of bits stored in the patterns to computer memory, depending 
on whether or not the symmetry of the matrix is used in the storage. In terms of both 
mean-field calculations for exact storage capacity and for the thermodynamics, the 
case p = 2  is special, correlations between Jl,, , Ip  other than those implied by the 
symmetry of the matrix being relevant in this case. The structure of the finite- 
temperature phase diagram is also different. For all values of p ,  the overlap with the 
input pattern m remains quite close to 1 (at zero temperature) even at a ,  and so the 
fraction of errors f( 1 - m )  is always small and thus the quality of recall is good. For 
p > 3, one has qualitatively the following results: the maximum storage fraction a ,  
(equation 9 (a ) )  for which a correlated metastable state exists increases with p if the 
symmetry of the J, , ,  , , p  is used in the storage (and in the replica symmetric approximation 
aC-p/4 ln  p as p + m )  whereas the maximum of the ratio a where the symmetry is 
not used (equation 9(b)),  a,, decreases with p (a,- 1/2( p - l ) !  In p ) .  The increase 
with p in the maximum temperature at which a metastable correlated state exists 
implies an increase in the heights of energy barriers and therefore an increase in the 
stability of the patterns with respect to noise. 

A disadvantage of increasing the value of p is that associative memory (the size of 
the basin of attraction of the input patterns) decreases (for p > 3) .  Although a ,  increases 
with p ,  the ability of the system to recognise patterns with a finite fraction of errors 
decreases. This can be seen firstly because the number of spurious metastable states 
increases with p and tends to 2N(1+0(”N))  as p + a-nearly all states are metastable 
in this limit. Secondly, from equation (15) correlations between the energy levels are 
determined by the value of q p  and so the size of a valley should behave approximately 
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as l / p  for large p .  The effect of specific mixture states, however, decreases with p and 
these states disappear completely at p + CO. 

From table 1, the three-spin model has a value of a ,  approximately three times 
larger than that of the two-spin model and so both models have approximately the 
same values of a,, although the fraction of errors at a, is greater in the three-spin 
model (at least in the replica symmetric approximation). The approximate equality 
of the values of a, agrees with numerical results (Maxwell et al 1986a, b, Psaltis and 
Park 1986). Replica symmetry breaking effects for the ferromagnetic solution should 
increase a,  and a, and be larger than for the two-spin model, although, since m is 
quite close to 1, this effect could still be small. Further replica breaking for both 
spin-glass and ferromagnetic solutions will also change finite p predictions for a, 
(although the value is exact as p + CO). 

Another result is that, at least in the case of the rather simple large-p limit (where 
the domains of attraction of input patterns vanish and the ferromagnetic states are 
completely correlated with the patterns), replica symmetry breaking introduces no new 
qualitative effects with respect to zero-temperature phase transitions. 

It would be interesting to extend these results to correlated patterns. In particular, 
multiconnected interactions should provide a way of reducing the effect of unwanted 
specific mixture states which appear in the two-spin calculations (Amit et al 1987). 
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